This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

SYNTHESIS, CHARACTERIZATION, AND X-RAY STRUCTURE OF BISfn-ACETATO DICARBONYL(DI-TERI-BUTYLPHOSPHINE) RUTHENIUM (I)]

Theresa A. Bright ${ }^{\text {a }}$; Richard A. Jones ${ }^{\text {a }}$; Christine M. Nunn ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, The University of Texas at Austin, Austin, Texas, U.S.A.

To cite this Article Bright, Theresa A. , Jones, Richard A. and Nunn, Christine M.(1988) 'SYNTHESIS, CHARACTERIZATION, AND X-RAY STRUCTURE OF BISfn-ACETATO DICARBONYL(DI-TERI-BUTYLPHOSPHINE) RUTHENIUM (I)]', Journal of Coordination Chemistry, 18: 4, 361-367
To link to this Article: DOI: 10.1080/00958978808080976
URL: http://dx.doi.org/10.1080/00958978808080976

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS, CHARACTERIZATION, AND X-RAY STRUCTURE OF BIS[μ-ACETATO DICARBONYL(DI-TERT-BUTYLPHOSPHINE) RUTHENIUM (I)]

THERESA A. BRIGHT, RICHARD A. JONES,* AND CHRISTINE M. NUNN
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, U.S.A.

(Received March 29, 1988)

Abstract

$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ reacts with di-tert-butylphosphine and acetic acid in di- n-butylether under reflux to form bis $[\mu-$ acetatodicarbonyl(di-tert-butylphosphine)ruthenium (1)] (1) in 80% yield. The crystal structure of $\mathbf{1}$ has been determined by single crystal X -ray diffraction methods. Crystal data for $1: \mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Ru}_{2}, M=$ 722.7, orthorhombic, space group Pbca, $a=12.955$ (2), $b=17.347$ (2), $c=28.638$ (4) $\AA, U=6435.8$ (5) $\AA^{3}, D_{c}=1.492 \mathrm{gcm}^{-3}, \lambda($ Mo $\mathrm{K} \alpha)=0.71073 \AA$, graphite monochromator, $\mu=10.56 \mathrm{~cm}^{-1}$. Methods: MULTAN, difference Fourier, full-matrix least-squares. Refinement of 2298 reflections ($I>3 \sigma(I)$ out of 6288 unique observed ($3^{\circ}<2 \theta<50^{\circ}$) gave R and R_{w} values of 0.050 and 0.057 , respectively. All nonhydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were not located. Data/parameter ratio $=7.07$, shift to error ratio $=0.38$, highest peak in the final difference Fourier $=$ $0.70, A^{-3}$. Data were collected on an Enraf-Nonius CAD-4 diffractometer at $23 \pm 2^{\circ} \mathrm{C}$. The complex has a $\mathrm{Ru}-\mathrm{Ru}$ bond of 2.735 (1) \AA which is bridged by two cis acetate groups. The CO groups also occupy cis locations on each Ru , while the two $t-\mathrm{Bu}_{2} \mathrm{PH}$ ligands occupy axial positions trans to the metal-metal bond. The coordination geometry about each Ru atom is roughly octahedral. The overall geometry of the molecule can be described as that of a "sawhorse-like" structure.

Keywords: Ruthenium (I), phosphine, dinuclear complex, acetate, carbonyl, X-ray structure

INTRODUCTION

As part of a study of the reactions of secondary phosphines $\left(\mathrm{R}_{2} \mathrm{PH}\right)$ with transition metal carbonyl complexes, we have investigated the reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with di-tert-butylphosphine (t - $\mathrm{Bu}_{2} \mathrm{PH}$) under forcing conditions (refluxing di- n-butyl ether). ${ }^{1}$ These reactions result in cleavage of $\mathrm{P}-\mathbf{H}$ and $\mathrm{P}-\mathrm{C}$ bonds to give a variety of phosphido and phosphinidene complexes such as $\mathrm{Ru}_{3}(\mu-\mathrm{H})_{2}\left(t-\mathrm{Bu}_{2} \mathrm{P}\right)_{2}(\mathrm{CO})_{8}$ and $\mathrm{Ru}_{3}(\mu-\mathrm{H})_{2}\left(t-\mathrm{Bu} \mathrm{V}_{2} \mathrm{PH}\right)\left(\mu_{3}-t-\mathrm{BuP}\right)(\mathrm{CO})_{8} .{ }^{1}$ The reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with tertiary phosphines such as tri-tert-butylphosphine and a variety of organic acids results in breakdown of the Ru_{3} core and formation of dinuclear bis $(\mu$-acetato)carbonyl phosphine complexes of the type bis[μ-carboxylatodicarbonyl(phosphine)ruthenium(I)] $(\mathrm{Ru}-\mathrm{Ru}) .{ }^{2}$ We therefore investigated the reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with t $\mathrm{Bu}_{2} \mathrm{PH}$ and acetic acid with the expectation that a phosphido or phosphinidene acetato complex would be formed. However, in refluxing di- n-butyl ether, the dinuclear bis-acetato bridged phosphine complex $\left[\mathrm{Ru}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)(\mathrm{CO})_{2}\left(t-\mathrm{Bu} \mathbf{2}_{2} \mathrm{PH}\right)\right]_{2}$ (1) is formed in 81% yield. This paper describes the synthesis, characterization, and X-ray crystal structure of $\mathbf{1}$.

[^0]TABLE I
Crystal Structure Parameters for Complex 1.

Description of Crystal	(1)
Colour	yellow
Habit	prism
Max. crystal dimension (mm)	$0.15 \times 0.23 \times 0.21$
Crystal system	orthorhombic
Space group	Pbca
Unit cell parameters:	
$a(\AA)$	12.955 (2)
$b(\AA)$	17.347 (2)
$c(\AA)$	28.638 (4)
$U\left(\AA^{3}\right)$	6435.8
Molecules per unit cell	8
Formula	$\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Ru}_{2}$
Molecular weight ($\mathrm{g} \mathrm{mol}^{-1}$)	724.69
Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.49
μ-calc. (cm^{-1})	10.56
Data Collection	
Radiation (\AA)	Mo K ${ }^{\text {(0.71073) }}$
Scan technique	- /2 ${ }^{\text {e }}$
Scan width (deg)	$0.55+0.35(\tan \theta)$
Range of indices h, k, l	+ 12, $+20,+33$
2θ range (deg)	3.0 to 50.0
No. reflections measured	6288
Standard reflections	
intensity	574,3014
orientation	485,574
Decay of standards	-2.1\%
Min. \% transmission	84.8
Max. \% transmission	98.4
Average \% transmission	90.5
Structure Determination	
No. reflections used ($I>3 \sigma(I)$)	2298
No. parameters varied	325
Data/parameter ratio	7.071
Shift to error ratio	0.385
E.s.d. of an observation of unit weight	3.187
$R^{\text {a }}$	0.050
$R_{w}{ }^{\text {a }}$	0.057

Description of Crystal
Colour

Max. crystal dimension (mm)
Crystal system
Space group
ll parameters
$b(\AA)$
$c(A)$
Molecules per unit cell
Formula
Molecular weight ($\mathrm{g} \mathrm{mol}^{-1}$)
Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)
μ-calc. (cm^{-1})
Data Collection
Radiation (\AA)
Scan technique
Scan width (deg)
Range of indices h, k, l
No. reflections measured
Standard reflections
intensity
orientation
Decay of standards
ansmission

Average \% transmission
Structure Determination
No. reflections used
No. parameters varied
325
Data/parameter ratio 7.071
Shift to error ratio
3.187
R^{a}
0.057
${ }^{\mathrm{a}} R$ and R_{w} are defined as $R=\Sigma\left|F_{o}\right|-\left|F_{\mathrm{c}}\right| / \Sigma\left|F_{o}\right|$ and $R_{w}=\left[\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \Sigma w\left(\left|F_{o}\right|^{2}\right]^{1 / 2}\right.$.

RESULTS AND DISCUSSION

The reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with di-tert-butylphosphine and acetic acid in refluxing di- n-butyl ether results in a lemon yellow solution after $c a 24 \mathrm{~h}$. From this solution, yellow crystals of $\mathbf{1}$ may be isolated following evaporation to dryness and recrystallization of the residue from hexane. The complex is air stable in the solid state and in

TABLE II
Selected bond distances (\AA) for 1.

Atom 1	Atom 2	Distance ${ }^{\text {a }}$
Rul	Ru2	2.735(1)
Rul	Pl	$2.465(4)$
Rul	06	2.12(1)
Rul	07	2.10(1)
Rul	C1	1.82(1)
Rul	C2	1.80(2)
Ru2	P2	2.458(5)
Ru2	O5	2.11(1)
Ru2	O8	2.10(1)
Ru 2	C3	1.79(2)
Ru2	C4	1.82(2)
PI	Cll	1.89(1)
PI	C15	1.89(1)
P2	C21	1.83(1)
P2	C25	1.87(1)

[^1]TABLE III
Selected bond angles (deg) for 1.

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
O5	Ru2	C3	94.6(6)	Ru2	Rul	P1	162.0(1)
O5	Ru2	C4	176.7(6)	Ru2	Rul	O6	$82.2(3)$
O8	Ru2	C3	175.9(6)	Ru2	Rul	07	83.1(3)
O8	Ru2	C4	$95.7(6)$	Ru2	Rul	Cl	95.6(5)
C3	Ru2	C4	86.7(8)	Ru2	Rul	C2	93.2(5)
Rul	P1	C11	$119.9(5)$	Pl	Rul	O6	84.6(3)
Rul	Pl	C15	117.4(5)	Pl	Rul	07	83.2(3)
Cll	PI	C15	111.67 (7)	Pl	Rul	Cl	97.8(5)
Ru2	P2	C21	119.6(5)	PI	Rul	C2	99.0 (5)
Ru2	P2	C25	118.7(6)	O6	Rul	07	82.8(4)
C 21	P2	C25	116.8(7)	O6	Rul	C1	95.7(6)
Ru2	O5	C5	124.2(9)	O6	Rul	C2	174.1(6)
Rul	O6	C5	125.6(9)	O7	Rul	C 1	178.1(6)
Rul	07	C7	124.8(9)	07	Rul	C2	$93.0(6)$
Ru2	O8	C7	125.6(9)	Cl	Rul	C2	88.5(7)
Rul	Cl	OI	178 (1)	Rul	Ru2	P2	162.4(2)
Rul	C2	O 2	178 (2)	Rul	Ru2	O5	83.3(3)
Ru2	C3	O3	178 (2)	Rul	Ru2	O8	82.2(3)
Ru 2	C4	O4	178 (2)	Rul	Ru2	C3	94.3(5)
				Rul	Ru2	C4	93.6(5)

Numbers in parentheses are estimated standard deviations.
solution for several hours. Spectroscopic data for 1 is in accord with the structure as determined by X-ray crystallography. Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum contains resonances assigned to the phosphine and acetate units and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR shows a singlet at ($\delta 37.43$) which splits into a doublet (${ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=389.4 \mathrm{~Hz}$) in the ${ }^{31} \mathrm{P}$ spectrum. The IR spectrum shows a weak $v_{\mathrm{p}-\mathrm{H}}$ peak at $2324 \mathrm{~cm}^{-1}$.

The compound 1 crystallizes in the orthorhombic space group Pbca (No. 61) with eight molecules per unit cell. Relevant crystal structure parameters are given in Table I and bond lengths and angles in Tables II and III. Positional parameters are given in Table IV.

TABLE IV
Positional Parameters for 1.

A view of the molecule is shown in Figure 1. The overall geometry of the molecule is similar to that found in $\left[\mathrm{Ru}\left(\mu-\mathrm{O}_{2} \mathrm{CC}_{3} \mathrm{H}_{7}\right)(\mathrm{CO})_{2}\left(t-\mathrm{Bu}_{3} \mathrm{P}\right)\right]_{2}$. The geometry can be described as a "sawhorse" with cis bridging acetato units and cis CO ligands on each Ru atom. The phosphine ligands occupy axial positions trans to the $\mathrm{Ru}-\mathrm{Ru}$ bond.

The $\mathrm{Ru}-\mathrm{Ru}$ distance in $\mathbf{1}$ is 2.735 (1) \AA which is within the range expected for a $\mathrm{Ru}-\mathrm{Ru}$ single bond. ${ }^{3}$ It is similar to that found in $\left[\mathrm{Ru}\left(\mu-\mathrm{O}_{2} \mathrm{CC}_{3} \mathrm{H}_{7}\right)(\mathrm{CO})_{2}\left(t-\mathrm{Bu}_{3} \mathrm{P}\right]_{2}\right.$ $(2.728(1) \AA)^{4}$ and the related amine complex $\left[\mathrm{Ru}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)(\mathrm{CO})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]_{2}(2.678$ (1) \AA). ${ }^{5}$ The μ-acetato bridges, CO , and phosphine ligands give each Ru atom a roughly octahedral coordination geometry. There is some distortion from an idealized geometry as evidenced by $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{P}(2)$ and $\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$ angles of 162.4 (2) ${ }^{\circ}$ and $162.0(1)^{\circ}$ respectively. In addition, the $\mathrm{Ru}-\mathrm{P}$ distances of 2.465 (4) and 2.458 (5) \AA for $\mathrm{Ru}(1)-\mathrm{P}(1)$ and $\mathrm{Ru}(2)-\mathrm{P}(2)$ are notably shorter than those found in the tri- t-butylphosphine $\left(\mu\right.$-n-butyrato)complex $\quad\left[\mathrm{Ru}\left(\mu-\mathrm{O}_{2} \mathrm{CC}_{3} \mathrm{H}_{7}\right)(\mathrm{CO})_{2}\left(t-\mathrm{Bu}_{3} \mathrm{P}\right)\right]_{2}$ (2.619 (3) \AA and 2.627 (3) \AA). ${ }^{4}$ It seems likely that the exceptionally long Ru-P distances in the latter compound are due to steric effects caused by the bulky t - $\mathrm{Bu}_{3} \mathrm{P}$ ligands. The $\mathrm{P}-\mathrm{H}$ atoms of the $t-\mathrm{Bu}_{2} \mathrm{PH}$ groups were not located in the X-ray structure. Their presence, however, is inferred from spectroscopic data.

FIGURE 1 ORTEP diagram of 1 showing the atom numbering scheme.

EXPERIMENTAL

General

All reactions were performed under oxygen-free nitrogen or under vacuum. Hexane was dried over sodium/benzophenone and distilled under nitrogen before use. Di- n butyl ether was dried over KOH and distilled under nitrogen. $\mathrm{Ru}_{3}(\mathrm{CO})_{12}{ }^{6}$ and t $\mathrm{Bu}_{2} \mathrm{PH}^{7}$ were prepared by literature methods. Acetic acid (glacial, 17.4 M) was used as received from American Scientific Products.

Instruments

NMR: GE QE-300 (${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$), IR: Digilab FTS-40. NMR spectra were recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at ambient temperature and are referred to $\mathrm{Me}_{4} \mathrm{Si},\left({ }^{1} \mathrm{H}\right)$, and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ $\left({ }^{31} \mathrm{P}\right)(\delta 0.0)$. Melting points were measured in sealed capillaries under nitrogen (1 atm) and are uncorrected.

Preparation of $\mathrm{R} u_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{t}-\mathrm{Bu} u_{2} \mathrm{PH}\right)_{2}(\mathbf{1})$
Excess acetic acid ($1 \mathrm{~cm}^{3}, 17.5 \mathrm{mmol}$) was added to a solution of $R u_{3}(\mathrm{CO})_{12}(0.20 \mathrm{~g}$, 0.33 mmol) and di-tert-butylphosphine ($0.10 \mathrm{~cm}^{3}, 0.73 \mathrm{mmol}$) in di- n-butyl ether $\left(50 \mathrm{~cm}^{3}\right)$. The mixture was stirred and heated under reflux for 24 hours. During this time the solution turned from orange to lemon yellow. The solution was cooled to room temperature, and volatile materials were removed under vacuum. The residue was extracted into hexane $\left(50 \mathrm{~cm}^{3}\right)$, and resulting yellow solution was evaporated under vacuum ($35 \mathrm{~cm}^{3}$). Cooling ($-40^{\circ} \mathrm{C}$) gave yellow crystals of 1 which were collected and dried under vacuum. Yield: $0.21 \mathrm{~g}(81 \%), \mathrm{mp}: 212-214^{\circ} \mathrm{C}$. IR: (nujol mull, NaCl), $2324 \mathrm{w}, 2318 \mathrm{w}, 2019 \mathrm{~s}, 1965 \mathrm{~s}, 1936 \mathrm{~s}, 1907 \mathrm{~m}, 1884 \mathrm{w}, 1583 \mathrm{~s}, 1556 \mathrm{w}$, $1531 \mathrm{w}, 1109 \mathrm{w}, 1198 \mathrm{w}, 1185 \mathrm{~m}, 1047 \mathrm{w}, 1024 \mathrm{~m}, 959 \mathrm{w}, 875 \mathrm{w}, 814 \mathrm{w}, 792 \mathrm{~m}, 688 \mathrm{w}$, $566 \mathrm{w}, 534 \mathrm{w}\left(\mathrm{cm}^{-1}\right)$. NMR: ${ }^{1} \mathrm{H}: \delta 3.94\left(\mathrm{~d}, 2 \mathrm{H}, t \mathrm{Bu}{ }_{2} \mathrm{P}-H,{ }^{1} \mathrm{~J}_{\mathrm{P} \cdot \mathrm{H}}=309.8 \mathrm{~Hz}\right) ; \delta 1.73$, ($\left.\mathrm{s}, 6 \mathrm{H}, \mathrm{O}_{2} \mathrm{CMe}\right) ; \delta 1.30,\left(\mathrm{~d}, 36 \mathrm{H}, t-B u_{2} \mathrm{PH},{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=11.1 \mathrm{~Hz} ;{ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}: \delta 37.43\right.$ (s); ${ }^{31} \mathrm{P}$: the $\delta 37.43$ peak splits into a doublet, ${ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=289.4 \mathrm{~Hz}$.

X-ray Experimental

Crystals of 1 were mounted in thin glass capillaries under a nitrogen atmosphere. Data were collected on an Enraf-Nonius CAD-4 diffractometer using graphitemonochromated Mo $\mathrm{K} a$ radiation. Final lattice parameters were determined from the angular settings of 25 strong reflections $\left(22^{\circ}<2 \theta<28^{\circ}\right)$. Data were collected by the $\theta / 2 \theta$ scan technique at $23 \pm 2^{\circ} \mathrm{C}$. Details of the standard data collection methods were similar to those outlined previously. ${ }^{8}$ All calculations were performed on a PDP 11/44 computer using the Enraf-Nonius CAD-4 software package "SDP-PLUS"."

The orthorhombic space group Pbca was uniquely determined by the systematic absences ($h 0 l, l=2 n+1,0 k l, k=2 n+1, h k 0, h=2 n+1$). Data were collected in the $+h,+k,+l$ quadrant between 2θ values of 3.0 and 50.0°. The data were then corrected for Lorentz and polarization effects. The check reflections showed a 2.1% decrease in intensity over the course of data collection. An anisotropic decay correction was therefore applied. A Ψ scan of 4 reflections having χ values between 80° and 90° showed a minimum percent transmission of 84.8 and a maximum percent transmission of 98.4. An empirical absorption correction (Program EAC) was applied. The positions of the heavy atoms were obtained by direct methods (MULTAN), ${ }^{10}$ and the remaining non-hydrogen atoms were located by successive cycles of difference Fourier maps followed by least-squares refinement. No hydrogen atoms were located, and data with intensities less than $3 \sigma(I)$ and $\sin \theta / \lambda$ less than 0.10 were excluded. A non-Poisson contribution weighting scheme with an instability factor P, set at 0.06 , was used in the final stages of refinement. ${ }^{11}$ The structure was refined to final values of 0.050 and 0.057 for R and R_{w}, respectively. The highest peak in the final difference Fourier map had a height of $0.70 \mathrm{e} / \AA^{3}$ and was located $1.01 \AA$ from $\mathrm{P}(2)$. Scattering factors were taken from reference 12 .

ACKNOWLEDGEMENTS

We thank the Robert A. Welch Foundation (F-816), the National Science Foundation (CHE-8517759), and the Texas Advanced Technology Research Program for support. R.A.J. thanks the Alfred P. Sloan Foundation for a fellowship (1985-89).

SUPPLEMENTARY MATERIAL

Complete tables of bond lengths and angles, tables of thermal parameters, and observed and calculated structure factor tables for 1 (17 pages) have been deposited with the Editor and are available upon request.

REFERENCES

I. A.M. Arif, T.A. Bright, R.A. Jones, C.M. Nunn and B.R. Whittelsey, manuscript in preparation.
2. B.F.G. Johnson, R.D. Johnston, J. Lewis and I.G. Williams, J. Chem. Soc. A., 689 (1971).
3. J.R. Heiman, and L.H. Pignolet, Inorg. Chem., 15, 564 (1976).
4. See for example; H. Schumann, J. Opitz and J. Pickardt, J. Organomet. Chem., 128, 253 (1971).
5. J.G. Bullit and F.A. Cotton, Inorg. Chim. Acta, 5, 406 (1971).
6. B.R. James, G.L. Rempel and W.K. Teo, Inorg. Synth., 16, 46 (1976).
7. H. Hoffiman and P. Schellenbeck, Ber., 99, 1134 (1966).
8. R.A. Jones and T.C. Wright, Organometallics, 2, 1842 (1983).
9. SDP Plus (4th ed., 1981), B.A. Frenz and Associates, College Station, Texas, 77840.
10. G. Germain, P. Main and M.M. Woolfson, Acta Cryst., A27, 368 (1971).
11. P is used in the calculation of $\sigma(I)$ to downweight intense reflections in the least squares refinement. The function minimized was $\Sigma w\left(\left|F_{o}\right|-\left|F_{\mathrm{r}}\right|\right)^{2}$ where $w=4\left(F_{o}\right)^{2} /\left[\Sigma\left(F_{o}\right)^{2}\right]^{2}$, where $\left[\Sigma\left(F_{o}\right)^{2}\right]^{2}=$ $\left[S^{2}\left(C+R^{2} B\right)+\left\{P\left(F_{o}\right)^{2}\right\}^{2}\right] / L p^{2}$, where S is the scan rate, C is the total integrated peak count, R is the ratio of scan time to background counting time, B is the total background count and $L p$ is the Lorentz-polarization factor.
12. International Tables for X-ray Crystallography: Vol IV, Kynoch Press, Birmingham (1974).

[^0]: *Author for correspondence

[^1]: ${ }^{a}$ Numbers in parentheses are estimated standard deviations.

